Table of Contents

List	t of Figures	ii
List	t of Tables	V
Ack	knowledgment	vi
Pre	face	vii
Intr	oduction	1
Cal	culating Probability of Failure	2
	An Illustrative Example - Retaining Wall Stability	2
	Factor of Safety Against Sliding	2
	Uncertainty in Factor of Safety Against Sliding	2
	Interpretation of "Probability of Failure"	6
Sun	nmary of the Taylor Series Method	8
Met	hods of Estimating Standard Deviation	10
	(1) Computation from Data	10
	(2) Published Values	10
	(3) The "Three-Sigma Rule"	11
	(4) Graphical Three-Sigma Rule	14
Exa	mple - A Slope that Failed	19
Exa	mple - The Benefit of Back Analysis	23
Exa	mple - Erosion and Piping	. 29
Exa	mple - Consolidation Settlement	41
Exa	mple - Settlement of Footings on Sand (SPT Method)	. 47
=xa⊩	mple - Settlement of Footings on Sand (CPT Method)	51

Selecting Appropriate Factors of Safety	54
Summary and Conclusions5	55
Appendix A - Theoretical Background of the Taylor Series Method	56
Appendix B - Determining Values of Probability of Failure Using an Assumed	
Lognormal Distribution of P _f 5	59
Appendix C - Precision of Values of P _f Computed Using the Taylor Series Method and Assumed Lognormal Distribution of P _f 6	
Appendix D - Method for Computing Coefficients of Variations of Empirical Correlations and Methods of Analysis6	
Examples - Empirical Correlations6	3 7
Appendix E - References7	7 3

List of Figures

Figure 1-	Cantilever retaining wall with silty sand backfill	3
Figure 2 -	Basis for the Three-Sigma Rule	13
Figure 3 -	Examples of the Graphical Three-Sigma Rule for estimating Standard deviation limits for parameters that vary with depth	16
Figure 4 -	Graphical Three-Sigma Rule for estimating standard deviation limits for strength envelope	18
Figure 5 -	Cross section through excavated trench at LASH Terminal after failure	20
Figure 6 -	Slope failure cross section	24
Figure 7 -	Drain wells to stabilize the slope	26
Figure 8 -	Cross section - Whittier Narrows Dam	31
Figure 9 -	Finite element mesh – Whittier Narrows Dam	35
Figure 10 -	Equipotential contours – Whittier Narrows Dam	36
Figure 11 -	Spreadsheet analyses – Whittier Narrows Dam	39
Figure 12 -	Consolidation settlement example	42
Figure 13 -	Comparison of measured settlements at the end of construction with settlements predicted by Eq (11)	48
Figure 14 -	Settlement ratios vs. probability of failure for coefficient of variation, V= 67% and 79%	50
Figure 15 -	Comparison of end of construction settlements of foundations on sand and gravels as predicted by cone penetration tests and as measured.	52
Figure C1 -	Comparison of values of P _f computed by Monte Carlo method and other methods	63
Figure D1 -	Hypothetical data and correlation	64
Figure D2 -	Spreadsheet for calculating coefficient of variation for an empirical correlation or method of analysis	66

Figure D3 -	Comparison of measured settlements of footings on sand at end of construction with values predicted by standard penetration test method	67
Figure D4 -	Relationship between compressibility,c, and water content for saturated, normally consolidated cohesive soils	68
Figure D5 -	Relationship between dynamic standard penetration test N_{60} values and compressibility, m_{ν} of sand developed by Burland and Burbidge	69
Figure D6 -	Values of friction angle φ' for clays of various compositions as reflected in plasticity index	70
Figure D7 -	Empirical correlation between friction angle f' of sand and normalized cone penetration resistance	71
Figure D8 -	Empirical correlation between drained Young's modulus E _s and weighted mean cone resistance based on settlement analysis of case records	72

List of Tables

Table 1.	Taylor Series reliability analysis for retaining wall	4
Table 2.	Probabilities that factor of safety is smaller than 1.0, based on lognormal distribution of factor of safety	7
Table 3.	Values of coefficient of variation (V) for geotechnical properties and in situ tests	12
Table 4.	Estimated and measured values of $C_c/(1+e)$ and its coefficient of variation, for San Francisco Bay mud	15
Table 5.	Taylor Series reliability analysis for LASH Terminal cut slope	22
Table 6.	Original design analysis, back analysis, and redesign analyses of slope	25
Table 7a.	Reliability analysis of the slope - original design	27
Table 7b.	Reliability analysis of the slope - redesign	27
Table 8.	Top layer permeability and standard deviation values	32
Table 9.	Lower layer permeability and standard deviation values	32
Table 10.	Head loss rates and standard deviations	33
Table 11.	Values of equivalent permeability and standard deviations used for "relief well" elements	34
Table 12.	Head loss rates and standard deviations	34
Table 13.	Taylor Series reliability analysis, based on finite element analysis results	38
Table 14.	Taylor Series reliability analysis, based on EM 1110-2-1910 spreadsheet analysis results	40
Table 15.	Taylor Series reliability analysis for ultimate consolidation settlement	43
Table 16.	Probabilities that settlement may be larger than the computed most likely settlement, based on lognormal distribution of settlement	44

Table 17.	Taylor Series reliability analysis for consolidation settlement a t =	
	2 years	46