LECTURE NOTES TABLE OF CONTENTS

Concencs	Page
Introduction, Seepage Problems, Darcy's Law,	٠
Permeability of Soils	1- 1
Seepage Problems	1- 2
Failure of Hell Hole Dam	1- 3
Failure of Teton Dam	1- 5
Darcy's Law	1-13
Head	
Permeability of Soils	1-14 1-15
Figure Showing Relationship Between Soil Type	1-12
and Permeability	1-16
Methods of Estimating or measuring Permeability	
Anisotropy of Permeability	1-17
Figure Showing Types of Permeameters	1-17
Velocity of Flow	1-18
Classes of Seepage Problems	1-19
Lecture Notes "Permeability of Soils"	1-19
Permeability of Soils	1-20
Values of Permeability	1-21
	1-21
Methods of Measuring or Estimating Values of k	1-22
Estimating Values of k Based on Grain Size	1-22
Table of Ranges of Permeability and Methods of	
Determining the Permeability of Soils	1-23
Figure Showing Approximate Relationship Among	
Permeability, D ₅₀ , and C _u	1-24
Effects of Stratification	1-26
Figure Showing Variations of Permeability with	
Depth in a Sand Deposit	1-27
Laboratory Measurements of Permeability	1-28
Constant-Head Permeability Tests	1-28
Falling-Head Permeability Tests	1-28
Figure Showing Constant-Head Permeability Test	1-29
Figure Showing Falling-Head Permeability Test	1-30
Determining Permeability Values From Consolidation	•
Test Results	1-31
Factors Affecting the Accuracy of Laboratory Tests	1-31
Field Measurements of Permeability	1-32
Borehole Flow Tests	1-32
Figure Showing Borehole Permeability Test	1-33
Field Pumping Tests	1-35
References	1-36
Steady Two-Dimensional Flow, Flow Nets	2- 1
Steady Flow in Two Dimensions	2- 2
Flow Nets	2- 2
Equations of Flow	2-3
Methods of Solution	2- 5
Advantages of Flow Nets	2- 5
Advantages of Other Methods	2 - 5

	<u>Page</u>
Figure Showing Flow Net Around a Single Row of	
Sheet Piles	2- 6
Figure Showing Flow Nets for Seepage Beneath a	
Concrete Dam	2- 7
Properties of Flow Nets	2- 8
Side Length Ratio	2- 9
Seepage Quantity From Flow Net	2- 9
Figure Showing Example Flow Nets for Sheetpile Wall Figure Showing Example Flow Nets for Seepage Beneath a Concrete Dam	2-10
Determining nf and nd	2-11
Heads and Pore Pressures from Flow Nets	2-12
Determining Pore Pressures and Uplift Pressures	2-13
Caution About Determining Heads and Pore Pressures	2-14 2-14
Figure Showing Examples of Determining Information From Flow Nets	2-14
Determining Hydraulic Gradients From Flow Nets	2-15
Information From Flow Nets - Summary	2-16
Figure Showing Examples of Determining Hydraulic	2 10
Gradients From Flow Nets	2-17
Figure Showing Examples of Determining Information	
From Flow Nets	2-18
Flow Net Techniques	•
Flow Net Techniques	3- 1
Figures Showing Examples of Flow Net Construction	3- 2
Figure Showing Examples of Boundary Conditions	3 - 3
Figure Showing Example of Flow Net Construction	3- 4 3- 4
Mechanics	3- 4 3- 5
Irregular Elements	3-5
Learning From Subdivision	3-9
Example Flow Net Analysis	3-10
Uplift Pressure	3-10
Hydraulic Gradient	3-11
Accuracy of Flow Net Analyses	3-11
Anisotropic Soils, Free Surface Problems,	
Layered Soils	
Flow Through Anisotropic Soils	4- 1
Determining Heads and Pore Pressures	4- 2
Example of Transformed Geometry	4-5 4-5
Figure Showing Flow Net for Sheet Pile in	4- 5
Anisotropic Soil	4- 6
Figure Showing Flow Net Beneath Concrete Dam on	
Anisotropic Soil	4-7
Figure Showing Flow Net for Anisotropic Embankment	4-8
Layered Solls	4-9
Figure Showing Flow Net Beneath Concrete Dam on	$s = (s, t) \in \mathcal{T}_{s_0}$
Layered Soils	4-10

	<u>Page</u>
Figure Showing Flow Net Beneath Concrete Dam on	
Anisotropic Soil	4-10
Figure Showing Flow Net for an Earth Dam on a More	
Permeable Foundation	4-11
Equivalent Anisotropy of Stratified Soils	4-12
Flow Nets with Unknown Boundaries	4-15
End Conditions on the Line of Seepage	4-16
Figure Showing Entrance, Discharge, and Transfer	
Conditions of Line of Seepage	4-17
Methods of Estimating Position of Line of Seepage	4-18
Equivalent Entrance Point (P)	4-18
Line of Seepage by Flow Net Theoretical Expressions	4-19
Dupuit's Solution	4-20
Tangent Method	4-20
Graphical Solution for Tangent Method	4-21
Sine Method	4-22
Locating Points on Line of Seepage	4-23
Confocal Parabola	4-25
Casagrande's Method	4-26 4-27
Seepage Quantity	4-27
Summary	4-28
Graphs for Locating the Line of Seepage in an	4-23
Earth Dam (Carstens' and May's Charts)	4-30
Example Using Carstens' and May's Charts	4-32
Erosion and Piping	5- 1
Seepage Forces	5- 2
Seepage Force per Unit Volume	5- 3
Terzaghi's Analysis Weighted Filter Berm	5- 5
Weighted Filter Berm Weighted Creep Ratio	5- 6
Table of Safe Values for the Wainblad s	5- 8
Table of Safe Values for the Weighted Creep Ratio Table of Examples of the Consequences of	5- 8
Uncontrolled Seepage	
Problems Associated with Natural Formations	5- 9
Recommendations for Preventing Piping on Natural	5-10
Formations	E 10
Problems Associated with Construction of Embankments	5-12
and Drains	5-12
Recommendations for Preventing Piping in Embankments	5-12
and Around Drains	5-16
	2 10
Filter Criteria, Remedial Measures for Seepage	
<u>Problems</u>	6- 1
Filter Criteria (Corps of Engineers)	6- 2
Sherard and Dunnigan Filter Criteria	6- 3
Sherard and Dunnigan Criteria	6-3
Sizes of Perforations in Pipes (Corps of Engineers	
Criteria)	6- 4

	Page
Figure Showing Prevention of Piping by Filters	6- 5
Filters and Leakage Control in Embankment Dams by Sherard and Dunnigan	
Seepage Control Measurers	6- 6
Cutoffs	6-22
Examples of Cutoffs	6-22 6-23
Examples of Drains	6-23
Seepage Blankets	6-25
Rock Foundation Grouting	6-25
Figure Showing Examples of Seepage Control Measures	6-26
Figure Showing Inclined and Horizontal Drains for Seepage Control	
Figure Showing Examples of Filters	6-27
Figure Showing Example of Chimney and Blanket Drain	6-28
Design	6-29
Figure Showing Influence of Size of Impervious Core	0-29
on Escape Gradients in Zoned Dams	6-30
Figure Showing Study of Partially Penetrating Cutoffs	6-31
Figure Snowing Typical Toe Drain Installation	6-32
Figure Showing Typical Relief Well	6-33
Figure Showing Retaining Wall Drainage System Used	0 33
with Clay Backfill	6-34
Figure Showing Drainage Blanket Located Adjacent to	• • •
Retaining Wall	6-35
Figure Showing Prefabricated Drainage System Used	
Adjacent to Retaining Wall	6-36
Figure Showing Drainage System Used to Prevent Frost	
Penetration Behind Retaining Wall	6-36
Table Summarizing Cutoff Methods for Seepage Control	6-37
Flow Toward Wells	
Flow Toward Wells	7- 1
Well Diameter	7- 2
Artesian Well Flow	7- 2
Boundary Conditions	7-3
Gravity Well Flow	7- 3 7- 5
Boundary Conditions	7- 6
Multiple Well Systems	7- 7
Artesian Flow	7- 7
Rule of Superposition	7- 8
Example of Multiple Well Artesian Flow	7-10
Multiple Well System - Gravity Flow	7-11
Gravity Flow	7-11
Rule of Superposition	7-12
Example of Multiple Well Gravity Flow	7-13
Ring of Wells	7-14
Well Adjacent to a River (Line Source)	7-15
rlow to a River	7-16
Superimposing Well Flow and Groundwater Flow	7-17

	<u>Page</u>
Finite Element Analyses	8- 1
Finite Element Analysis of Seepage	8- 2
One-Dimensional Flow	8- 2
Seepage Quantity	8-3
Two-Dimensional Flow	8- 6
Seepage Quantity	8- 7
Anisotropic Materials	8- 9
Assembled Transmissibility Matrix	8-11
Modifying Equations for Boundary Conditions	8-12
Example of Modifying Equations	8-13
Finite Element Analyses of Free Surface Problems	8-15
Method 1 (Computer Program SEEP)	8-15
Method 2 (Any Computer Program)	8-16
Mesh Design	8-17
Example Mesh	8-17
Mesh Design	8-18
Sheet-Pile Cutoffs	8-19
End Boundaries	8-19
Deriving Information From Finite Element Results	
Element Results	8-20
References	0 1